
A Comparison of Techniques for Scheduling Fleets of Earth-Observing
Satellites

Al Globus
CSC at NASA Ames

James Crawford
NASA Ames

Jason Lohn
NASA Ames

Anna Pryor
NASA Ames

Abstract

Earth observing satellite (EOS) scheduling is a complex
real-world domain representative of a broad class of
oversubscription scheduling problems. Oversubscrip-
tion problems are those where requests for a facility ex-
ceed its capacity. These problems arise in a wide vari-
ety of NASA and terrestrial domains and are an impor-
tant class of scheduling problems because such facilities
often represent large capital investments. We have run
experiments comparing multiple variants of the genetic
algorithm, hill climbing, simulated annealing, squeaky
wheel optimization and iterated sampling on two vari-
ants of a realistically-sized model of the EOS schedul-
ing problem. These are implemented as permutation-
based methods; methods that search in the space of
priority orderings of observation requests and evaluate
each permutation by using it to drive a greedy sched-
uler. Simulated annealing performs best and random
mutation operators outperform our squeaky (more in-
telligent) operator. Furthermore, taking smaller steps
towards the end of the search improves performance.

Introduction
A growing fleet of scientific, military, and commercial
Earth observing satellites (EOS) circles the globe. Al-
though there are approximately 60 EOS satellites in
orbit today, image collection is nearly always scheduled
separately for each satellite with manual coordination,
if any. Some studies (Globus et al. 2002) (Rao, Soma,
& Padmashree 1998) have suggested that automatic co-
ordination of multiple satellites can be beneficial, but
the best scheduling technique to use is not clear. The
problem is complicated by the fact that EOS schedul-
ing is subject to multiple complex constraints, includ-
ing power, thermal, data capacity, and the limited time
each satellite spends over each target. Furthermore,
when we consider the total number of observations that
can be performed by a satellite constellation (thou-
sands) and the number of options (time windows) there
are for each observation, we find that the search space
for EOS scheduling problems is quite large.

More importantly from a research point of view, EOS
scheduling is one instance of a larger class of over-
subscription scheduling problems. These problems are
characterized by more requests for a resource than can

be satisfied, insuring that some requests remain un-
fulfilled. In addition to EOS, such problems include
scheduling planetary probes, telescopes, the deep space
network, supercomputers, wind tunnels and other test
facilities. In general, oversubscription problems arise
when requests for a facility need to be scheduled so as
to optimize productivity subject to a complex set of
operational constraints, but the requests interact with
each other weakly (e.g., through shared resources) and
do not generate additional requests. It is these proper-
ties that distinguish oversubscription scheduling prob-
lems from the more general, and more difficult, class of
oversubscription planning problems (Smith 2004).

Our work focuses on permutation-based (Syswerda
& Palmucci 1991) approaches to scheduling problems.
The key insight underlying such approaches is that if
we could greedily schedule the EOS observation re-
quests in an optimal order then we would produce an
optimal schedule.1 Thus, a greedy scheduler allows
us to search the space of priority vectors (a.k.a. per-
mutations) rather than the space of schedules. This
change of representation has two key advantages: First,
and most importantly, the greedy scheduler can take
any permutation and produce a feasible (though gen-
erally sub-optimal) schedule. This means that we can
make local moves, including genetic crossover opera-
tions, without straying into infeasible space (in contrast
to methods that search in the space of schedules which
must work hard to maintain feasibility, or find ways to
evaluate the goodness of infeasible schedules). Second,
if there are many possible times at which observations
can be scheduled it is often the case that the space of
possible permutations is significantly smaller than the
space of possible schedules.

Computational scheduling techniques have been ap-
plied to the EOS scheduling problem by several authors,
including:

1. Sherwood (Sherwood et al. 1998) used ASPEN,
a general purpose scheduling system, to automate

1We should note that proving optimality for a
permutation-based method in a domain requires a detailed
analysis of the constraints and optimization criteria of the
domain as well as the details of the greedy scheduler.

scheduling of NASA’s EO-1 satellite.

2. Potter and Gasch (Potter & Gasch 1998) described
a clever algorithm for scheduling NASA’s Landsat 7
satellite featuring greedy search forward in time with
fixup to free resources for high priority observation.

3. Lamaitre’s group has examined EOS scheduling is-
sues including comparison of multiple techniques.
See, for example, (Lamaitre, Verfaillie, & Bataille
1998), (Bensana, Lemaitre, & Verfaillie 1999) and
(Lamaitre et al. 2000).

4. Wolfe and Sorensen (Wolfe & Sorensen 2000) com-
pared three algorithms on the window-constrained
packing problem, which is related to EOS scheduling.
They found that the genetic algorithm produced the
best schedules, albeit at a significant CPU cost.

Our study compares thirteen EOS scheduling algo-
rithms on two variants of a realistically-sized model
problem. In particular, we compare simulated anneal-
ing, hill climbing, the genetic algorithm, squeaky wheel
optimization, and iterated sampling (ISAMP). In the
next section we describe the scheduling problem and
our model. A description of the scheduling techniques
follows. The nature and results of our computational
experiments are then presented along with analysis.

EOS Scheduling Problem

We first describe the real EOS scheduling problem.
Then we describe the model problems used in this ex-
periment.

EOS scheduling attempts to take as many high-
priority observations as possible within a fixed period
of time with a fixed set of satellite-born sensors. For
example, the Landsat 7 satellite scheduler is considered
to have done a good job if 250 observations are made
each day. EOS scheduling is complicated by a number
of important constraints. Potin (Potin 1998) lists some
of these constraints as:

1. Revisit limitations. A target must be within sight
of the satellite. EOS satellites travel in fixed orbits,
usually about 800 km up and 100 minutes per orbit.
These orbits pass over any particular place on Earth
at limited times so there are only a few observation
windows (and sometimes none) for a given target.

2. Time required to take each image. Most Earth ob-
serving satellites take a one-dimensional image and
use the spacecraft‘s orbital motion to sweep out the
area to be imaged. For example, a Landsat image
requires 24 seconds of orbital motion.

3. Limited on-board data storage. Images are typically
stored on a solid state recorder (SSR) until they can
be sent to the ground.

4. Ground station availability. The data in the SSR is
sent to the ground (SSR dumps) when the satellite
passes over a ground station. Ground station win-
dows are limited as with any other target.

5. Transition time between look angles (slewing). Some
instruments are mounted on motors that can point
side-to-side (cross-track).

6. Power and thermal control availability.
7. Coordination of multiple satellites.
8. Cloud cover. Some sensors cannot see through

clouds.
9. Stereo pair acquisition or multiple observations of the

same target by different sensors or the same sensor
at different times.

Both variants of our model problem exhibit all these
constraints except the last two. The problems consist
of three satellites in Sun-synchronous orbits (orbits in
which the equator is crossed at the same local time each
orbit) for one week. The satellites are spaced ten min-
utes apart. Each satellite carries one sensor mounted
on a cross-track slewable motor that can point up to 24
degrees to either side of nadir (nadir is straight down)
and turns one degree in two seconds. In Problem 1,
each satellite has an SSR capable of storing 50 arbi-
trary units. In Problem 2, the SSR stores 75 units.

We model power and thermal constraints using so-
called duty cycle constraints, the approach taken by
Landsat 7. A duty cycle constraint requires that the
sensor not be turned on for longer that a maximum
time within any interval of a certain length. Our model
problem uses the Landsat 7 duty cycles. Specifically, a
sensor may not be used for more than:

1. 34 minutes in any 100 minute period,
2. 52 minutes in any 200 minute period, or
3. 131 minutes in any 600 minute period.

There is one ground station in Alaska. Whenever a
satellite comes within sight of the ground station it is
assumed to completely empty its SSR, which is then
available for additional observation storage. There are
approximately 75 SSR dumps per spacecraft during the
week. Since some orbits are over oceans and all targets
are on land, some SSR dump opportunities are wasted
on an empty SSR.

6300 observation targets were randomly generated on
land. Of these, 6114 are observable by at least one
satellite during the one week scheduling period. The
targets are assumed to be at the center of a rectangle
that requires 24 seconds of satellite motion to image.
Each observation requires one, three, or five arbitrary
storage units (evenly distributed) on the SSR. Each ob-
servation was assigned a priority from one to six evenly
spaced in 0.1 increments. Each observation has 2-24
windows, times when a satellite is within view of the
observation‘s target. Orbits and windows were deter-
mined by the free version of the Analytical Graphics
Inc.’s Satellite Tool Kit, also known as the STK (see
www.stk.com).

The fitness (quality) of each schedule is determined
by a weighted sum (smaller values indicate better fit-
ness):

F = wp

∑
Ou

Po + wsS + waA (1)

where F is the fitness, Ou is the set of unscheduled
observation, Po is an observation’s priority, S is the to-
tal time spent slewing, A is the sum of the off-nadir
pointing angle for all scheduled observations, w stands
for weight, wp = 1, ws = 0.01, and wa = 0.00137 for
Problem 1 and wa = 0.02 for Problem 2. Note that the
weights favor the priority of unscheduled observations
over pointing and slewing time objectives, and that the
off-nadir pointing objective has very little influence on
Problem 1. ws is set so that scheduling another ob-
servation always increases fitness, but just barely for a
Po = 1 observation. wa in Problem 2 is set similarly.

There are only two differences between the model
problem variants: Problem 2 has more SSR space and
the off-nadir pointing objective is much more impor-
tant. Additional SSR space implies that the duty cycle
constraint will be more important.

Scheduling Algorithms
This study compares thirteen search algorithms ap-
plied to the EOS scheduling problem. The simplest
techniques were hill climbing, simulated annealing, two
variants of the genetic algorithm, and ISAMP (essen-
tially random search). By using a more intelligent mu-
tation operator, these algorithms (except ISAMP) be-
come variants of squeaky wheel optimization (Joslin &
Clements 1999).

We represent a schedule as a permutation or arbi-
trary, non-temporal ordering of the observations. The
observations are scheduled one at a time in the order
indicated by the permutation. In psuedo-code:
1. int[] permutation = permutation of the integers 1-

numberOfObservations
2. for(int i = 1; i != numberOfObservations; i++)
(a) schedule observation permutation[i] if it does not

violate any of the current constraints
This allows us to search in permutation-space as op-
posed to schedule-space. A simple, greedy, determinis-
tic, one-observation scheduler assigns resources to ob-
servations in the order indicated by the permutation.
This produces a set of timelines with all of the sched-
uled observations, the time they were taken, and the
resources (SSR, sensor, pointing angle) used. The one-
observation scheduler assigns times and resources to ob-
servations using earliest-first scheduling heuristics while
maintaining consistency with all constraints. If an ob-
servation cannot be scheduled without violating the
current constraints (those created by scheduling obser-
vations from earlier in the permutation), the observa-
tion is left unscheduled.

Earliest-first scheduling starting at time = 0 had
problems. We discovered that the one-observation
scheduler works better if, for each observation, ’earliest-
first’ starts at some initial time rather than time = 0.

The initial time, set randomly at first, is generally dif-
ferent for each observation. The one-observation sched-
uler starts at the initial time and looks forward for
a constraint-free window. If none is found before the
end of time, the scheduler wraps around to time = 0.
The time each observation is scheduled (or, if unsched-
uled, what time ’earliest-first’ search started) is stored
and preserved by mutation and crossover. The extra
scheduling flexibility may explain why this approach
works better than earliest-first starting at time = 0.

Constraints are enforced by representing sensors,
slew-motors and SSRs as timelines. Scheduling an ob-
servation causes timelines to take on appropriate values
(i.e., in use for a sensor, slew motor setting, amount of
SSR memory available) at appropriate times. These
timelines are checked for constraint violations as the
one-observation scheduler attempts to schedule addi-
tional observations.

The simplest search technique tested was ISAMP,
which is essentially a random search. With ISAMP,
each schedule is generated from a random permutation
with random start times for the one-observation sched-
uler. The rest of the search techniques start with ran-
dom permutations and generate new permutations with
mutation and/or crossover. The techniques tested were:

1. Hill climbing (Hc), which starts with a single ran-
domly generated permutation. This permutation
(the parent) is mutated to produce one new permu-
tation (a child) which, if the child represents a more
fit schedule than the parent, replaces the parent.

2. Simulated annealing (Sa), which is similar to hill
climbing except that less fit children can replace the
parent with a probability that the depends on an ar-
tificial temperature. The temperature starts at 100
(arbitrary units) and is multiplied by 0.92 every 1000
children (100,000 children are generated per job).

3. A steady-state tournament selection genetic algo-
rithm (Gs) with population size 100. The individual
to replace is chosen by a tournament from the whole
population where the least fit is replaced. Tourna-
ment size is always two.

4. A generational elitist genetic algorithm (Gg) with
population size 110 where the 10 best individuals are
copied into the next generation. Parents are chosen
by tournament (size = 2).

Each search technique was tested with three mutation
operators:

1. Random swap (Rs). Two permutation locations are
chosen at random and the observations are swapped,
with 1-15 swaps (chosen at random) per mutation.
Earlier experiments (Globus et al. 2003) determined
that allowing more than one swap improved schedul-
ing (see Table 3).

2. Temperature-dependent swap (Td). Here the num-
ber of swaps (1-15) is still chosen at random but with
a bias. Early in evolution a larger number of swaps

tend to be used, and later in evolution fewer swaps are
performed. This is analogous to the ’temperature’ de-
pendent behavior of simulated annealing. The choice
of the number of swaps is determined by a weighted
roulette wheel where the weights vary linearly as evo-
lution proceeds starting at n and ending at 16 − n
where n is the number of swaps. Earlier experiments
tried fewer swaps early in evolution and more swaps
later. This didn’t work as well.

3. Squeaky shift (Ss). This implements squeaky wheel
optimization. The mutator shifts 1-15 (chosen ran-
domly) ’deserving’ observations earlier in the permu-
tation. Early in the permutation an observation is
more likely to be scheduled since fewer other obser-
vations will have been scheduled to create additional
constraints. Each observation to shift forward is cho-
sen by a tournament of size 50, 100, 200, or 300
(chosen at random each time). The observation is
always chosen from the last half of the permutation.
The position-to-shift-in-front-of is chosen by a tour-
nament of the same size (each time) and is guaran-
teed to be at a location at least half way towards
the front of the permutation (starting at the ’deserv-
ing’ observation). The observation most deserving to
move earlier in the permutation is determined by the
following characteristics (in order):

(a) unscheduled rather than scheduled
(b) higher priority
(c) later in the permutation

The position-to-shift-in-front-of tournament looks for
the opposite characteristics.

In the case of the genetic algorithms, half of all chil-
dren are created by mutation and the other half by
crossover. The crossover operator is position-based
crossover (Syswerda & Palmucci 1991). Roughly half of
the permutation positions are chosen at random (50%
probability per position). The observations in these po-
sitions are copied from the father to the same permuta-
tion location in the child. The remaining observations
fill in the child‘s other permutation positions in the or-
der they appear in the mother.

We tested a number of other mutation operators.
The ones examined in this experiment performed the
best. See (Globus et al. 2003) and Table 3 for some of
these data. There was not time to implement and test
’max-flexibility’ (Kramer & Smith 2003). We did test
heuristic-biased stochastic sampling (HBSS) (Bresina
1996) with contention heuristics (Frank et al. 2002),
a technique proposed for the EOS scheduling problem
that searches schedule-space rather than permutation-
space. HBSS was hundreds of times slower than the
permutation-based techniques, required far more mem-
ory, and produced very poor schedules. There are
many techniques that search schedule-space and these
results are not sufficient to draw conclusions comparing
permutation-space and schedule-space search.

Experiment
To find the best algorithm for the model problems we
compared a total of thirteen techniques. These were
ISAMP and every combination of four search techniques
– hill climbing, simulated annealing, steady state GA,
and generational GA – crossed with three mutation op-
erators – 1-15 random swaps, 1-15 temperature depen-
dent swaps, and 1-15 squeaky shifts. Thirty-two jobs
with identical parameters (except the random number
seed) were run for each algorithm. Each job generated
approximately 100,000 schedules (the GA jobs gener-
ated slightly more).

Table 1 compares the algorithms for Problem 1 and
Table 2 for Problem 2. In Table 1 and the figures, the
techniques are ordered by the mean fitness in Problem
1. Table 2 is ordered by the mean fitness in Problem 2.
Most, although not all, of the differences were statisti-
cally significant by both t-test and ks-test, with confi-
dence levels usually far above 99%. For the most part,
the ordering is similar for all fitness objectives (prior-
ity, slewing time, or off-nadir pointing), although there
are some exceptions. Table 3 shows similar results with
slightly different techniques on a smaller but related
problem. We have had similar results on other prob-
lems as well.

Simulated annealing is the clear winner for all prob-
lems. For Problem 1, hill climbing with temperature
dependent swaps equals simulated annealing with ran-
dom swaps, but on Problem 2 simulated annealing al-
ways wins. Even hill climbing outperforms both forms
of the genetic algorithm and this is true regardless of
mutation operator. ISAMP, as one might expect for
random search, performed the worst.

For simulated annealing and hill climbing, tempera-
ture dependent swaps outperform all other mutation
operators, although for the genetic algorithms ran-
dom swaps outperform temperature dependent swaps.
Both random swaps and temperature dependent swaps
clearly outperform squeaky shifts for all search tech-
niques.

The small standard deviations for all algorithms sug-
gest that all jobs for a given algorithm get about the
same fitness. Thus, even if the fitness landscape is
multi-modal, most of the minima must be about the
same. Figures 1 and 2, which show the breadth of each
fitness distribution over 32 jobs, confirms this view.
For this reason, we suspect that this problem requires
mostly exploitation, rather than exploration, which also
explains the poor GA results. Evolutionary change is
spread out over the GA populations rather than concen-
trated on a single individual as in simulated annealing
and hill climbing.

The squeaky shift mutator‘s performance relative to
random swaps suggests that it is smart in the wrong
way. In preliminary experiments we also tried swap-
ping, rather than shifting, observations (see Table 3).
The shift operator performed the best, but still not as
well as the random swap mutator (data not published).
If random outperforms intelligent, then clearly intel-

ligence is being applied in the wrong way. We do not
understand the dynamics of permutation-space schedul-
ing in any fundamental way, and we don’t even know
if the dynamics are similar for different problems. Un-
til a better understanding is reached, the random swap
operators – with a decrease in the number of swaps as
evolution proceeds – appear best.

Figures 3 and 4 show one effect of changing wa from
to 0.00137 in Problem 1 to 0.2 in Problem 2. In Prob-
lem 2, the absolute value of the off-nadir pointing is
reduced and the range of values is greatly reduced, sug-
gesting that the pointing objective is important enough
to affect the search.

Summary
We compared thirteen different permutation-space
search techniques for scheduling EOS fleets on
realistically-sized model problems. Simulated anneal-
ing outperformed hill climbing which, in turn, outper-
formed the genetic algorithm. Simple random swap
mutation outperformed the more ’intelligent’ squeaky
mutation. Reducing the number of random swaps as
evolution proceeds further improved performance. Al-
though we examined only two closely related problems
here, we have seen essentially the same results on other
EOS scheduling problems.

An important follow-up to our work would be an
equally thorough study of non-permutation methods;
those that search in the space of all possible schedules.
We examined one candidate, HBSS with contention
heuristics, which performed very poorly. We conjecture
that the simplicity of local search in permutation-space
(particularly the fact that we do not need to search in
infeasible space) will lead permutation-based methods
to dominate on many oversubscription problems. How-
ever, this conjecture can only be evaluated by a head-
to-head comparison of the best permutation-based and
schedule-based search algorithms.

Acknowledgements
This work was funded by NASA’s Computing, Infor-
mation, & Communications Technology Program, Ad-
vanced Information Systems Technology Program (con-
tract AIST-0042), and by the Intelligent Systems Pro-
gram. Thanks to Bonnie Klein for reviewing this paper
and to Jennifer Dungan, Jeremy Frank, Robert Mor-
ris and David Smith for many helpful discussions. Fi-
nally, thanks to the developers of the excellent Colt
open source libraries for high performance scientific and
technical computing in Java.

References
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999.
Earth observation satellite management. Constraints
4(3):293–399.
Bresina, J. 1996. Heuristic-biased stochastic sampling.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.

Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2002.
Planning and scheduling for fleets of earth observing
satellites. In Proceedings of the 6th International Sym-
posium on Artificial Intelligence, Robotics, Automa-
tion and Space 2002.
Globus, A.; Crawford, J.; Lohn, J.; and Morris, R.
2002. Scheduling earth observing fleets using evo-
lutionary algorithms: Problem description and ap-
proach. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A.
2003. Scheduling earth observing satellites with evo-
lutionary algorithms. In Conference on Space Mission
Challenges for Information Technology (SMC-IT).
Joslin, D. E., and Clements, D. P. 1999. Squeaky
wheel optimization. Journal of Artificial Intelligence
Research 10:353–373.
Kramer, L., and Smith, S. 2003. Maximizing flexibil-
ity: A retraction heuristic for oversubscribed schedul-
ing problems. In Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence,
286–291.
Lamaitre, M.; Verfaillie, G.; Frank, J.; Lachiver, J.;
and Bataille, N. 2000. How to manage the new gen-
eration of agile earth observation satellites. In Pro-
ceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space.
Lamaitre, M.; Verfaillie, G.; and Bataille, N. 1998.
Sharing the use of a satellite: an overview of methods.
In SpaceOps 1998.
Potin, P. 1998. End-to-end planning approach for
earth observation mission exploitation. In SpaceOps
1998.
Potter, W., and Gasch, J. 1998. A photo album of
earth: Scheduling landsat 7 mission daily activities.
In SpaceOps 1998.
Rao, J. D.; Soma, P.; and Padmashree, G. S. 1998.
Multi-satellite scheduling system for leo satellite oper-
ations. In SpaceOps 1998.
Sherwood, R.; Govindjee, A.; Yan, D.; Rabideau, G.;
Chien, S.; and Fukunaga, A. 1998. Using aspen to
automate eo-1 activity planning. In Proceedings of the
1998 IEEE Aerospace Conference.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In 14th International Confer-
ence on Automated Planning & Scheduling. Submit-
ted.
Syswerda, G., and Palmucci, J. 1991. The applica-
tion of genetic algorithms to resource scheduling. In
Proceedings of the Fourth International Conference on
Genetic Algorithms, 502–508.
Wolfe, W. J., and Sorensen, S. E. 2000. Three schedul-
ing algorithms applied to the earth observing systems
domain. Management Science 46(1):148–168.

algorithm F (fitness) F StdDev
∑

Ou
Po (priority) S/|Ou| (slewing) A/|Ou| (pointing) |Ou| (unscheduled)

SaTd 9205 20 8571 17 10.1 2211
HcTd 9310 21 8659 18 10.3 2289
SaSr 9311 19 8662 18 10.2 2250
HcSr 9368 25 8716 18 10.3 2313
SaSs 9489 19 8872 19 10.4 2583
HcSs 9507 24 8865 19 10.4 2512
GgSr 9700 38 9017 20 10.3 2430
GsSr 9700 25 9019 20 10.4 2430
GsTd 9741 31 9049 20 10.5 2428
GgTd 9834 24 9130 20 10.5 2458
GgSs 9964 53 9281 21 10.5 2652
GsSs 10010 46 9330 21 10.4 2673

ISAMP 10463 11 9727 23 10.7 2723

Table 1: Scheduling algorithms tested ordered by mean fitness for 32 jobs on Problem 1. All values are means except
column 3. Smaller values are best. Column heading labels refer to Equation 1. Sa stands for simulated annealing,
Hc for hill climbing, Gs for steady-state GA, Gg for generational GA, Rs for random swaps, Td for temperature
dependent swaps, and Ss for squeaky shifts.

algorithm F (fitness) F StdDev
∑

Ou
Po (priority) S/|Ou| (slewing) A/|Ou| (pointing) |Ou| (unscheduled)

SaTd 5571 23 3954 16 9.5 1118
SaSr 5648 22 4009 17 9.6 1125
SaSs 5786 29 4163 18 9.9 1332
HcTd 5870 28 4237 18 9.7 1246
HcSr 5913 36 4273 18 9.6 1258
HcSs 6032 38 4419 18 9.8 1421
GgSr 6306 45 4640 19 10.0 1371
GsSr 6317 44 4646 19 10.0 1375
GsTd 6340 35 4642 19 10.1 1351
GgTd 6489 39 4782 20 10.2 1399
GgSs 6735 66 5088 21 10.2 1615
GsSs 6839 78 5185 21 10.3 1638

ISAMP 7797 12 6124 23 10.6 1774

Table 2: Same as Table 1 except data (and ordering) from Problem 2.

search algorithm transmission operators mean fitness
Sa 1-9 Rs 2171
Sa 1 Rs 2354

Hc 5 restarts 1-9 Rs 2539
Hc 5 restarts 1 Rs 2564
Hc 0 restarts 1 Rs 2575

Sa 1 squeaky swap 2772
Sa 1 placed squeaky swap 2814
Hc 1 squeaky swap 2868
Gs crossover and 1 Rs 3007

Table 3: Results from a somewhat different problem with a different, but related, set of search techniques. Note that
the overall results are similar. Here the problem has two satellites and 4000+ observations with SSR size, slewing
rate and times, and other aspects different from the model that generated Tables 1 and 2. Details can be found in
(Globus et al. 2003).

Figure 1: Comparison fitness (vertical axis) for 32 jobs in Problem 1. The boxes indicate the second and third
quartiles. The line inside the box is the median and the whiskers are the extent of the data. Outliers are represented
by small circles.

Figure 2: Same as Figure 1 with data from Problem 2.

Figure 3: Mean off-nadir pointing angle needed for each scheduled observation (mean of A/|Ou| from Equation 1).

Figure 4: Same as Figure 3 with data from Problem 2.

